An automatic stock price movement prediction using circularly dilated convolutions with orthogonal gated recurrent unit

Durga Meena Rajendran, Maharajan Kalianandi, Bhuvanesh Ananthan

Abstract


Recently, stock trend analysis has played an integral role in gaining knowledge about trading policy and determining stock intrinsic patterns. Several conventional studies reported stock trend prediction analysis but failed to obtain better performance due to poor generalization capability and high gradient vanishing problems. In light of the need to forecast stock price trends using both textual and empirical price data, this research proposed a novel hybridized deep learning (DL) model. Preprocessing, feature extraction, and prediction are the three effective stages that the created research goes through in order to properly estimate the stock movements. Data cleaning, which helps improve data quality, is calculated in the preprocessing step. Next, we use the created CDConv-OGRU technique-hybridized circularly dilated convolutions with orthogonal gated recurrent units-to extract features and make predictions. Python serves as the platform for processing and analyzing the created approach. This research uses a publicly accessible StockNet database for testing and compares results using a number of performance metrics, including accuracy, recall, precision, Mathew’s correlation coefficient (MCC), and f-score. In the experimental part, the created approach obtains a total of 95.16% accuracy, 94.8% precision, 94.89% recall, 95% confidence interval, and 0.9 MCC, in that order.

Keywords


Circularly dilated convolution; Deep learning; Financial data analytics; Market information; Orthogonal gated recurrent unit; Stock prediction; Stock trading

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v41.i2.pp823-832

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).

shopify stats IJEECS visitor statistics