Automated adversarial detection in mobile apps using API calls and permissions
Sanjaikanth E Vadakkethil Somanathan Pillai, Rohith Vallabhaneni, Srinivas A Vaddadi, Santosh Reddy Addula, Bhuvanesh Ananthan
Abstract
Android mobile phones’ growing popularity has led to developers creating more malicious apps, which can be included in third-party arcades as protected applications. Detecting these malware applications is challenging due to time-consuming and high-cost techniques. This study proposes a robust deep learning (DL) model for detecting adversarial third-party apps using adaptive feature learning. The strategy involves preprocessing raw apk files, extracting permission behavioral features, and using the proposed spatial dropout-assisted convolutional autoencoder (SD_ConvAE) model to determine if the app is benign or malignant. The approach is simulated using a Python tool and assessed using various measures like accuracy, recall, weighted F-score (W-FS), false discovery rate (FDR), and kappa coefficient. The overall accuracies achieved by the developed techniques are about 99.6% and 99% for detecting benign and malignant apps, respectively.
Keywords
Android mobile apps; Application programming interface calls; Deep learning; Permission; SD_ConvAE model; Third-party attacks
DOI:
http://doi.org/10.11591/ijeecs.v37.i3.pp1672-1681
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).
IJEECS visitor statistics