Automated adversarial detection in mobile apps using API calls and permissions

Sanjaikanth E Vadakkethil Somanathan Pillai, Rohith Vallabhaneni, Srinivas A Vaddadi, Santosh Reddy Addula, Bhuvanesh Ananthan

Abstract


Android mobile phones’ growing popularity has led to developers creating more malicious apps, which can be included in third-party arcades as protected applications. Detecting these malware applications is challenging due to time-consuming and high-cost techniques. This study proposes a robust deep learning (DL) model for detecting adversarial third-party apps using adaptive feature learning. The strategy involves preprocessing raw apk files, extracting permission behavioral features, and using the proposed spatial dropout-assisted convolutional autoencoder (SD_ConvAE) model to determine if the app is benign or malignant. The approach is simulated using a Python tool and assessed using various measures like accuracy, recall, weighted F-score (W-FS), false discovery rate (FDR), and kappa coefficient. The overall accuracies achieved by the developed techniques are about 99.6% and 99% for detecting benign and malignant apps, respectively.

Keywords


Android mobile apps; Application programming interface calls; Deep learning; Permission; SD_ConvAE model; Third-party attacks

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v37.i3.pp1672-1681

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics