TextBugger: an extended adversarial text attack on NLP-based text classification model

Sanjaikanth E. Vadakkethil Somanathan Pillai, Srinivas A. Vaddadi, Rohith Vallabhaneni, Santosh Reddy Addula, Bhuvanesh Ananthan

Abstract


Recently, adversarial input highly negotiates the security concerns in deep learning (DL) techniques. The main motive to enhance the natural language processing (NLP) models is to learn attacks and secure against adversarial text. Presently, the antagonistic attack techniques face some issues like high error and traditional prevention approaches accurately secure data against harmful attacks. Hence, some attacks unable to increase more flaws of NLP models thereby introducing enhanced antagonistic mechanisms. The proposed article introduced an extended text adversarial generation method, TextBugger. Initially, preprocessing steps such as stop word (SR) removal, and tokenization are performed to remove noises from the text data. Then, various NLP models like Bi-directional encoder representations from transformers (BERT), robustly optimized BERT (ROBERTa), and extreme learning machine neural network (XLNet) models are analyzed for outputting hostile texts. The simulation process is carried out in the Python platform and a publicly available text classification attack database is utilized for the training process. Various assessing measures like success rate, time consumption, positive predictive value (PPV), Kappa coefficient (KC), and F-measure are analyzed with different TextBugger models. The overall success rate achieved by BERT, ROBERTa, and XLNet is about 98.6%, 99.7%, and 96.8% respectively.

Keywords


Attack detection; BERT; Natural language processing; Robustly optimized BERT; Text adversaries; XLNet

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v38.i3.pp1735-1744

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).

shopify stats IJEECS visitor statistics