An innovative machine learning optimization-based data fusion strategy for distributed wireless sensor networks
Abstract
Self-sufficient sensors scattered over different regions of the world comprise distributed wireless sensor networks (DWSNs), which track a range of environmental and physical factors such as pressure, temperature, vibration, sound, motion, and pollution. The use of data fusion becomes essential for combining information from various sensors and system performance. In this study, we suggested the multi-class support vector machine (SDF-MCSVM) with synthetic minority over-sampling techniques (SMOTE) data fusion for wireless sensor network (WSN) performance. The dataset includes 1,334 instances of hourly averaged answers for 12 variables from an AIR quality chemical multisensor device. To create a balanced dataset, the unbalanced data was first pre-processed using the SMOTE. The grey wolf optimization (GWO) approach is then used to reduce features in an effort to improve the efficacy and efficiency of feature selection procedures. This method is applied to classify the fused feature vectors into multiple categories at once to improve classification performance in WSNs and address unbalance datasets. The result shows the proposed method reaches high precision, accuracy, F1-score, recall, and specificity. The computational complexity and processing time were decreased in the study by using the proposed method. This is great potential for accurate and timely data fusion in dispersed WSNs with the successful integration of data fusion technologies.
Keywords
Data fusion; DWSNs; GWO; MCSVM; SMOTE
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v36.i2.pp1012-1022
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).