Expert systems in mental health: innovative approach for personalized treatment

Laberiano Andrade-Arenas, Inoc Rubio-Paucar, Domingo Hernández Celis, Cesar Yactayo-Arias

Abstract


Custom classification of mental illnesses has emerged as a challenge for mental health specialists, often minimized by patients' lack of awareness of symptoms and the importance of early intervention. Therefore, the purpose of this research is to provide a comprehensive understanding of personalized treatment, encompassing both pharmacological and non-pharmacological options, specifically tailored to mental disorders, considering factors such as the patient's age and gender, among other relevant characteristics. In this context, the Buchanan methodology has been chosen as the framework for structuring a web-based expert system. This approach covers everything from problem identification to system implementation and subsequent evaluation. The survey results, with a total of 50 responses, reveal that the category "Good" leads with 70%, closely followed by "Fair" and "Poor," both at 14%. 71.4% of responses reflect a positive evaluation, with 85.7% combining "Good" or "Fair" responses, and all categories reaching 100%. These results support the feasibility and effectiveness of implementing a web-based expert system under the Buchanan methodology. A positive response in the survey suggests that this methodology can significantly contribute to personalizing and recommending appropriate treatments, both pharmacological and non-pharmacological, thereby benefiting a broad spectrum of patients with mental disorders.

Keywords


Buchanan methodology; Comprehensive treatment; Expert system; Mental diseases; Patients

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v36.i1.pp414-427

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics