Text Classification on Customer Feedback: A Systematic Literatures Review

Zuleaizal Sidek, Sharifah Sakinah Syed Ahmad, Yogan Jaya Kumar, Noor Hasimah Ibrahim Teo


User feedback in text classification serves multiple purposes, including refining models, enhancing datasets, adapting to user preferences, identifying emerging topics, and evaluating system performance, all of which contribute to the creation of more effective and user-centric classification systems. Many text classification techniques, including data mining, machine learning, and deep learning approaches, have been employed in previous literature, each making significant contributions to the field. This paper aims to contribute by guiding researchers seeking commonly used classification techniques and evaluation metrics in text processing. Additionally, it identifies the classification technique that generates higher accuracy and works as a basis for researchers to synthesize studies within their respective fields. PRISMA methodology is adapted to systematically review 28 current literatures on text classification on user feedback. The results obtained are guided by four research questions; paper distribution year, dataset source and size; evaluation metric and model accuracy. The review has shown that support vector machines (SVM) are frequently employed and consistently achieve high levels of accuracy as high as 97.17% with various datasets used. The future direction of this work could explore models that integrate sentiment analysis and natural language understanding to more accurately capture nuanced user opinions and preferences.


Text Analytics; Textual Data; Text Classification

Full Text:


DOI: http://doi.org/10.11591/ijeecs.v34.i2.pp1258-1267


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics