Image classification based on few-shot learning algorithms: a review

Qiao Qi, Azlin Ahmad, Wang Ke


Image classification is a critical task in the field of computer vision, and its importance has significantly increased over the past few years. Machine learning and deep learning techniques have demonstrated immense potential in this field. However, traditional image classification models require a vast amount of training data, which can be challenging and expensive to obtain. To overcome this limitation, researchers are turning to few-shot learning, which aims to classify images with limited training samples. This paper presents a detailed analysis of the field of image classification using few-shot learning. First, it investigates the use of data augmentation, transfer learning, and meta-learning methods in this field. Then, it introduces several commonly used datasets and evaluation metrics in few-shot classification, compares several classical few-shot classification methods, and summarizes the experimental results obtained from public datasets. Finally, this paper analyzes the current challenges in few-shot image classification and suggests potential future directions.


Data augmentation; Deep learning; Few-shot image classification; Machine learning; Meta-learning; Transfer learning

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics