Comparative analysis on liver benchmark datasets and prediction using supervised learning techniques

Tilakachuri Balakrishna, Jagadeeswara Rao Annam, Dasari Haritha

Abstract


Disease diagnosis is most challenging task today. Different datasets are available in web source that contains important features to diagnose the diseases. This paper explores different classification algorithms on medical liver bench mark datasets like BUPA and Indian Liver patient dataset (ILPD). The ILPD is best fit for the model and also gives high classifier accuracy. In proposed model the following classifiers like Naïve Bayes (NB), support vector machine (SVM), K-nearest neighbor (KNN), decision tree (DT), and random forest (RF) classification, multi-layer perceptron (MLP), artificial neural network (ANN), deep belief network (DBN) and probabilistic neural network (PNN) are used. The results shown that ILPD is best dataset for all classifiers and RF classification in particular is best classifier.

Keywords


Classification; Liver diagnosis; Machine learning; Medical data mining; Soft-computing

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v36.i2.pp1043-1051

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics