Deep neural network with fuzzy algorithm to improve power and traffic-aware reliable reactive routing
Radhakrishnan Murugesan, Satish Kanapala, Subash Rajendran, Prathaban Banu Priya, Rathinasabapathy Ramadevi, Natarajan Duraichi, Rengaraj Hema
Abstract
In wireless networks, link breaks, and restricted resources create fundamental challenges for maintaining network applications. Several wireless network routing techniques concentrate on power efficiency to expand the network lifetime, but the traffic and reliability parameters are not the primary concern. Though, these techniques are not capable of dealing with the wireless network. Hence, this paper proposes deep neural network (DNN) with a fuzzy algorithm to improve power and traffic-aware reliable reactive routing (PTAR) in wireless networks. The wireless network is formed by clustering by the node power and selects the cluster head (CH) based on a fuzzy algorithm. The wireless node power level, node buffer space, and node reliability to consider the input parameters of the fuzzy system. Then thefuzzy algorithm gives the output for CH round length. This selected CH improves the node reliability, power efficiency with minimized network congestion. Then we use a DNN algorithm to choose an optimal relay by applying an adaptive load balance factor in the network. DNN is a machine learning algorithm, and it provides high accuracy. From the simulation results, the PTAR approach improves the network performance, such as packet received ratio, delay, residual energy, and routing overhead.
Keywords
Adaptive load balance; CH selection; Deep neural network; Fuzzy algorithm; Power aware routing; Traffic aware routing
DOI:
http://doi.org/10.11591/ijeecs.v33.i1.pp380-388
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).
IJEECS visitor statistics