Local post-hoc interpretable machine learning model for prediction of dementia in young adults
Abstract
Dementia is still the prevailing brain disease with late diagnosis. There is a large increase in dementia disease among young adults. The major reason is over indulgence of young adults on social media resulting in denial of disease and delayed clinical diagnosis. Dementia is preventable and curable if diagnosed at an early stage, however, no attempts are being made to miti gate dementia in young adults. Today artificial intelligence (AI) based advanced technology with real-life consultations in clinical or remote setups are proved beneficial and is used to detect dementia. Most AI-based test is dependent on computer-aided di agnosis (CAD) tools and uses non-invasive imaging technology such as magnetic resonance imaging (MRI) data for disease diagnosis. In this paper, a local post-hoc interpretable machine learning (LPIML) model for prediction of dementia in young adults is proposed. The performance parameters are computed and compared based on accuracy, specificity, precision, F1 score and recall. The proposed work yields 98.87% training accuracy on original images and 99.31% training accuracy on morphologically enhanced images. The performance results are intrinsic and intuitive in learning the prediction results of individual case. The adoption of the proposed work will accelerate the diagnosis process in the era of digital healthcare.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v32.i3.pp1569-1579
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).