Bone osteosarcoma tumor classification

Kamel Hussien Rahouma, Ahmed Salama Abdellatif


Osteosarcoma is a malignant bone tumor that usually affects children and adolescents. Early detection of osteosarcoma tumors increases the likelihood of successful therapy. Manual identification of osteosarcoma requires highly skilled doctors. In this study, we attempt to create a model to automatically diagnose tumors into three categories; non-tumor, viable-tumor, and osteosarcoma tumor. The suggested methodology can help medical professionals identify tumors correctly and quickly. The proposed approach uses the gray level co-occurrence matrix (GLCM) to extract features for feature extraction and three different classifiers for tumor detection. The used classifier are XG-Boost, support vector machine (SVM), and K-nearest neighbors. Finally, ensemble voting is used by combining the predictions from these classifiers. The system achieves 91.8% accuracy.


Deep learning; Ensemble voting; Gray level co-occurrence matrix; Image detection; Medical imaging; Osteosarcoma detection

Full Text:




  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics