Adaptive cancellation of light relative intensity noise for fiber optic gyroscope

Zhong xiao Ji

Abstract


In order to reduce the relative intensity noise (RIN) in the interferometric signal of the fiber optic gyroscope (FOG), an adaptive noise subtraction method is presented, which aims to overcome to the drawbacks that the fixed delay time and gain of the digital noise subtraction method. The drawbacks will make the performance of FOG to be degraded greatly in the changing environment. In the paper the adaptive noise subtraction system based on the recursive least squares algorithm (RLS) is formed in FPGA, in which the interferometric signal is regarded as the signal source, and RIN in the free end of the optical fiber coupler of FOG is looked as the noise reference signal. The two critical parameters that minimum delay time and its varying range result from measuring the minimum and maximum delay times of the interferometric signal in a certain temperature range. The off-line and on-line temperature experimental results verify the capability of adapting to the environmental temperature.

 

DOI : http://dx.doi.org/10.11591/telkomnika.v12i1.3373


Keywords


fiber optic gyroscope, relative intensity noise, recursive least squares

Full Text:

PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics