Underdetermined direction of arrival estimation for multiple input and multiple outputs sparse channel based on Bayesian learning framework
Abstract
Direction of arrival (DOA) estimation for a sparse channel has attracted serious attention recently. Better signal analysis and denoising achieve accuracy in DOA determination. This paper proposes an underdetermined DOA estimation for multiple input and multiple outputs (MIMO) sparse channels. A novel multi-kernel-based non-negative sparse Bayesian learning (MK NNSBL) framework is implemented using the multiplied form of basis vector within the manifold matrix for a defined grid. Meanwhile, virtual antenna locations are reconfigured by exploiting the conventional cuckoo search algorithm (CCSA) for the fine reception of incoming signals on a nonuniform linear array (NULA). The simulated results reveal that the novel approach outperforms in its optimal root mean square error (RMSE) for various signal-to-noise ratio (SNR) limits and the compilation time. The convergence comparative graph indicates the improved performance in the proposed framework over existing algorithms.
Keywords
CCSA; Direction of arrival; MIMO; NNSBL; Non-uniform linear array
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v31.i1.pp170-179
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).