Review of current artificial intelligence methods and metaheuristic algorithms for wind power prediction
Abstract
Due to the insufficient fossil resources and the increasing environmental challenges, the world is heading for a more use-oriented to renewable energy sources, specifically to wind energy. A number of predictive techniques are available for the efficient use of wind energy. This article, which is a review of methods of artificial intelligence (AI) and meta-heuristic algorithms for wind energy prediction, fits into this context. There are two distinct categories: the first consists of traditional methods that are commonly used in this context, like different types of artificial neural networks (ANN), support vector machines (SVM) and fuzzy logic; the second is a combined approach which mixes the classic artificial intelligence methods and the meta-heuristic algorithms for the optimization of the forecast output. Then, a summary and comparison between the methodologies are established, and the advantages and limits of each technique are defined. The combination of the classic artificial intelligence and metaheuristic algorithms has a greater performance than the utilization of classic methods only. Nevertheless, using hybrid metaheuristic algorithms with classic artificial intelligence prediction methods can provide a higher precision.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v29.i2.pp626-634
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).