Semantics based English-Arabic machine translation evaluation

Majdi Beseiso, Samiksha Tripathi, Bashar Al-Shboul, Renad Aljadid

Abstract


Some classic machine translation (MT) Evaluation methods, such as the bilingual evaluation understudy score (BLEU), have notably underperformed in evaluating machine translations for morphologically rich languages like Arabic. However, the recent remarkable advancements in the domain of word vectors and sentence vectors have opened up new research avenues for low-resource languages. This paper proposes a novel linguistic-based evaluation method for English-translated sentences in Arabic. The proposed approach includes penalties based on length, positions, and context-based schemes such as part-of-speech tagging (POS) and multilingual sentenceBERT (SBERT) models for machine translation evaluation. The proposed technique is tested using pearson correlation as a performance evaluation parameter and compared with state-of-the-art techniques. The experimental results demonstrate that the proposed model evidently outperforms other MT evaluation methods such as BLEU.

Keywords


Arabic machine translation; Bilingual evaluation understudy; Dense sentence embedding; Linguistic knowledge

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v27.i1.pp189-197

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics