Retired electric vehicle battery to reduce the load frequency control oscillation in the micro grid system
Abstract
The potential of a retired electric vehicle battery (REVB) is its capacity to provide backup power supply to the power system grid. This paper proposed energy storage system (ESS) based on REVB called retired battery energy storage system (retired BESS) to tackle the intermittent of renewable energy source such as wind turbine and dynamic load change. To examine the efficacy of the proposed technique, the load frequency control (LFC) of microgrid (MG) system is utilized in this study and the proposed technique is compared to conventional LFC controller, PI controllers, superconducting magnetic energy storage (SMES), and a new electric vehicle battery. The kind of retired BESS cell used in this study is Li-ion nickel manganese cobalt oxide (NMC) type with a state of charge as of 70%. The capacity of each cell for retired BESS is 38 Ah. From the simulation result, the use of retired BESS can reduce frequency oscillation, compress the settling time to reach steady state, and maintain the robustness of the MG system. A retired BESS has a minimum error performance index value compared to conventional LFC, proportional integral (PI) controller, and SMES.
Keywords
Frequency stability; Load frequency control; Microgrid; Renewable energy; Retired battery energy storage system; Superconducting magnetic energy storage
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v28.i3.pp1266-1275
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).