Advanced virtual inertia control against wind power intermittency
Abstract
Rapid industrial development requires more energy to support their manufacturing processes. Unfortunately, conventional energy was mostly utilized as a primary energy source which is unfriendly to nature and can damage the environment. Nowadays, the transformation from the use of conventional energy to renewable energy sources is increasingly being socialized throughout the world. However, the existence of renewable energy poses new challenges in the world of electricity systems where their effect is reducing the inertia (inertialess) value of conventional energy such as thermal generators. This condition causes frequency oscillations and leads to blackout the electricity system. To overcome this problem, this paper proposed advanced virtual inertia control (VIC) based on an superconducting magnetic energy storage (SMES) employed to accommodate the effects of the integration of renewable energy into the electric power system. SMES was choosen because it has a fast response and an efficiency rate of up to 90%. A two-area power system model was utilized to examine the proposed VIC model based on SMES. From the simulation results, VIC based on has succeeded in reducing frequency oscillations by compressing the system overshoot and reducing the settling time to steady-state.
Keywords
Clean energy technology; Electricity; Frequency; Inertialess; New energy
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v28.i3.pp1256-1265
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).