Real-time passenger social distance monitoring with video analytics using deep learning in railway station
Iqbal Ahmad Dahlan, Muhammad Bryan Gutomo Putra, Suhono Harso Supangkat, Fadhil Hidayat, Fetty Fitriyanti Lubis, Faqih Hamami
Abstract
Recently, at the end of December, the world faced a severe problem which is a pandemic that is caused by coronavirus disease. It also must be considered by the railway station's authorities that it must have the capability of reducing the covid transmission risk in the pandemic condition. Like a railway station, public transport plays a vital role in managing the COVID-19 spread because it is a center of public mass transportation that can be associated with the acquisition of infectious diseases. This paper implements social distance monitoring with a YOLOv4 object detection model for crowd monitoring using standard CCTV cameras to track visitors using the DeepSORT algorithm. This paper used CCTV surveillance with the actual implementation in Bandung Railway Station with the accuracy at 96.5 % result on people tracking with tested in real-time processing by using minicomputer Intel(R) Xeon(R) CPU E3-1231 v3 3.40GHz RAM 6 GB around at 18 FPS.
Keywords
CCTV surveillance; COVID-19; DeepSORT algorithm; People detection; People tracking; Social distancing
DOI:
http://doi.org/10.11591/ijeecs.v26.i2.pp773-784
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).
IJEECS visitor statistics