Smart monitoring system using NodeMCU for maintenance of production machines

Ignatius Deradjad Pranowo, Dian Artanto

Abstract


Maintenance is an activity that helps to reduce risk, increase productivity, improve quality, and minimize production costs. The necessity for maintenance actions will increase efficiency and enhance the safety and quality of products and processes. On getting these conditions, it is necessary to implement a monitoring system used to observe machines' conditions from time to time, especially the machine parts that often experience problems. This paper presents a low-cost intelligent monitoring system using NodeMCU to continuously monitor machine conditions and provide warnings in the case of machine failure. Not only does it provide alerts, but this monitoring system also generates historical data on machine conditions to the Google Cloud (Google Sheet), includes which machines were down, downtime, issues occurred, repairs made, and technician handling. The results obtained are machine operators do not need to lose a relatively long time to call the technician. Likewise, the technicians assisted in carrying out machine maintenance activities and online reports so that errors that often occur due to human error do not happen again. The system succeeded in reducing the technician-calling time and maintenance workreporting time up to 50%. The availability of online and real-time maintenance historical data will support further maintenance strategy.

Keywords


ESP8266; IoT; Maintenance; Monitoring system; NodeMCU

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v25.i2.pp788-795

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics