Efficient electro encephelogram classification system using support vector machine classifier and adaptive learning technique

Virupaxi Balachandra Dalal, Satish S. Bhairannawar

Abstract


Complex modern signal processing is used to automate the analysis of electro encephelogram (EEG) signals. For the diagnosis of seizures, approaches that are simple and precise may be preferable rather than difficult and time-consuming. In this paper, efficient EEG classification system using support vector machine (SVM) and Adaptive learning technique is proposed. The database EEG signals are subjected to temporal and spatial filtering to remove unwanted noise and to increase the detection accuracy of the classifier by selecting the specific bands in which most of the EEG data are present. The neural network based SVM is used to classify the test EEG data with respect to training data. The cost-sensitive SVM with proposed Adaptive learning classifies the EEG signals where the adaptive learning with probability based function helps in prediction of the future samples and this leads in improving the accuracy with detection time. The detection accuracy of the proposed algorithm is compared with existing which shows that the proposed algorithm can classify the EEG signal more effectively.

Keywords


Adaptive learning; Classifier; Electro encephelogram; Spatial filter; Support vector machine;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v25.i1.pp291-297

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics