Development and performance evaluation of object and traffic light recognition model by way of deep learning

Shweta Bali, Tapas Kumar, Shyam Sunder Tyagi

Abstract


Deep learning models have shown incredible achievement in the field of autonomous driving, covering different aspects ranging from recognizing traffic signs and traffic lighs, vehicle detection, license plate detection, pedestrian detection. Most of the algorithms perrform better when the traffic lights are bigger in size, but the performance degrades in case of small-sized traffic lights. In this paper, the main emphasis is on evaluating two most promising deep learning architectures: single shot detector (SSD) and faster region convolutinal network (Faster R-CNN) on “la route automatisée (LaRA) traffic light dataset” which contains small traffic lights as objects. The strengths and weaknesses are evaluated based on different parameters. The performance is compared in terms of mean average Precision (mAP@0.50) and average recall. The impact of data augmentation on the two architectures is also analyzed. ResNet50 V1 as feature extractor for Faster R-CNN achieved 96% mAP (mean average precision) which performed better than Original ResNet50 V1 Faster R-CNN pipeline. Also, different parameters such as batch size, learning rate and optimizer are tuned for detecting and classifying small traffic lights into different categories. 

Keywords


Autonomous driving; Deep learning; Faster R-CNN; SSD; Traffic light detection;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v26.i3.pp1486-1494

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics