Identification of optimum segment in single channel EEG biometric system

Muhammad Afif Hendrawan, Pramana Yoga Saputra, Cahya Rahmad

Abstract


Nowadays, biometric modalities have gained popularity in security systems. Nevertheless, the conventional commercial-grade biometric system addresses some issues. The biggest problem is that they can be imposed by artificial biometrics. The electroencephalogram (EEG) is a possible solution. It is nearly impossible to replicate because it is dependent on human mental activity. Several studies have already demonstrated a high level of accuracy. However, it requires a large number of sensors and time to collect the signal. This study proposed a biometric system using single-channel EEG recorded during resting eyes open (EO) conditions. A total of 45 EEG signals from 9 subjects were collected. The EEG signal was segmented into 5 second lengths. The alpha band was used in this study. Discrete wavelet transform (DWT) with Daubechies type 4 (db4) was employed to extract the alpha band. Power spectral density (PSD) was extracted from each segment as the main feature. Linear discriminant analysis (LDA) and support vector machine (SVM) were used to classify the EEG signal. The proposed method achieved 86% accuracy using LDA only from the third segment. Therefore, this study showed that it is possible to utilize single-channel EEG during a resting EO state in a biometric system.

Keywords


Biometric; EEG; LDA; SVM;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v23.i3.pp1847-1854

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics