Mathematical modeling and algorithm for calculation of thermocatalytic process of producing nanomaterial
Abstract
At present, when constructing a mathematical description of the pyrolysis reactor, partial differential equations for the components of the gas phase and the catalyst phase are used. In the well-known works on modeling pyrolysis, the obtained models are applicable only for a narrow range of changes in the process parameters, the geometric dimensions are considered constant. The article poses the task of creating a complex mathematical model with additional terms, taking into account nonlinear effects, where the geometric dimensions of the apparatus and operating characteristics vary over a wide range. An analytical method has been developed for the implementation of a mathematical model of catalytic pyrolysis of methane for the production of nanomaterials in a continuous mode. The differential equation for gaseous components with initial and boundary conditions of the third type is reduced to a dimensionless form with a small value of the peclet criterion with a form factor. It is shown that the laplace transform method is mainly suitable for this case, which is applicable both for differential equations for solid-phase components and calculation in a periodic mode. The adequacy of the model results with the known experimental data is checked.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v23.i3.pp1590-1601
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).