Novel deep learning model for vehicle and pothole detection
Abstract
The most important aspect of automatic driving and traffic surveillance is vehicle detection. In addition, poor road conditions caused by potholes are the cause of traffic accidents and vehicle damage. The proposed work uses deep learning models. The proposed method can detect vehicles and potholes using images. The faster region-based convolutional neural network (CNN) and the inception network V2 model are used to implement the model. The proposed work compares the performance, accuracy numbers, detection time, and advantages and disadvantages of the faster region-based convolution neural network (Faster R-CNN) with single shot detector (SSD) and you only look once (YOLO) algorithms. The proposed method shows good progress than the existing methods such as SSD and YOLO. The measure of performance evaluation is Accuracy. The proposed method shows an improvement of 5% once compared with the previous methods such as SSD and YOLO.
Keywords
Faster R-CNN; Inception model; Transfer learning;
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v23.i3.pp1576-1582
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).