Deep image mining for convolution neural network

Dhamea A. Jasm, Murtadha M. Hamad, Azmi Tawfek Hussein Alrawi

Abstract


Image mining is the method of searching and discovering valuable information and knowledge from a huge image dataset. Image mining is based on data mining, digital image processing, machine learning, image retrieval, and artificial intelligence. Image mining handled with the hidden information extraction, an association of image data and additional pattern which are not clearly visible in the image. Choosing the proper objects or the feature of the image to be suitable for image mining process is the main challenge would face the programmer. The process includes fine out the most efficient routes at a shorter time and saving the users effort. The main objective of this paper is to design and implement the image classification system with a higher performance, where a CIFAR-10 data set is used to train and testing classification models using CNN. A convolutional neural network is trustworthy, and it could lead to high-quality results. The high accuracy of 98% has been obtained using deep convolutional neural network (DCNN).


Keywords


CNN; DCNN; Images classification

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v20.i1.pp347-352

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics