Neutral expression synthesis using kernel active shape model
Abstract
This paper presents a modified kernel-based Active Shape Model for neutralizing and synthesizing facial expressions. In recent decades, facial identity and emotional studies have gained interest from researchers, especially in the works of integrating human emotions and machine learning to improve the current lifestyle. It is known that facial expressions are often associated with face recognition systems with poor recognition rate. In this research, a method of a modified kernel-based active shape model based on statistical-based approach is introduced to synthesize neutral (neutralize) expressions from expressional faces, with the aim to improve the face recognition rate. An experimental study was conducted using 3D geometric facial datasets to evaluate the proposed modified method. The experimental results have shown a significant improvement on the recognition rates.
Keywords
3D face; Facial synthesis Kernel; PCA; Kernel-based; ASM; Neutral expression
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v20.i1.pp150-157
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).