Deep learning versus traditional methods for parking lots occupancy classification

Mohamed Sayed Farag, Mostafa Mohamed Mohie El Din, Hassan Ahmed Elshenbary

Abstract


Due to the increase in number of cars and slow city developments, there is a need for smart parking system. One of the main issues in smart parking systems is parking lot occupancy status classification, so this paper introduce two methods for parking lot classification. The first method uses the mean, after converting the colored image to grayscale, then to black/white. If the mean is greater than a given threshold it is classified as occupied, otherwise it is empty. This method gave 90% correct classification rate on cnrall database. It overcome the alexnet deep learning method trained and tested on the same database (the mean method has no training time). The second method, which depends on deep learning is a deep learning neural network consists of 11 layers, trained and tested on the same database. It gave 93% correct classification rate, when trained on cnrall and tested on the same database. As shown, this method overcome the alexnet deep learning and the mean methods on the same database. On the Pklot database the alexnet and our deep learning network have a close resutls, overcome
the mean method (greater than 95%).

Keywords


Alexnet and intelligent transportation systems; Deep learning; DWT; Parking lot classification; PCA; Smart parking

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v19.i2.pp964-973

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics