A novel similarity measure for missing link prediction in social networks

Gogulamudi Naga Chandrika, E. Srinivasa Reddy

Abstract


Social Networks progress over time by the addition of new nodes and links, form associations with one community to the other community. Over a few decades, the fast expansion of Social Networks has attracted many researchers to pay more attention towards complex networks, the collection of social data, understand the social behaviors of complex networks and predict future conflicts. Thus, Link prediction is imperative to do research with social networks and network theory. The objective of this research is to find the hidden patterns and uncovered missing links over complex networks. Here, we developed a new similarity measure to predict missing links over social networks. The new method is computed on common neighbors with node-to-node distance to get better accuracy of missing link prediction. We tested the proposed measure on a variety of real-world linked datasets which are formed from various linked social networks. The proposed approach performance is compared with contemporary link prediction methods. Our measure makes very effective and intuitive in predicting disappeared links in linked social networks.


Keywords


Complex networks; Link prediction; Missing links; Similarity measure; Social networks

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v19.i2.pp1071-1077

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics