Deep learning utilization in Sundanese script recognition for cultural preservation

Rosalina Rosalina, Nunik Afriliana, Wiranto Herry Utomo, Genta Sahuri

Abstract


This study addresses the challenge of preserving the Sundanese script, a traditional writing system of the Sundanese community in Indonesia, which is at risk of being forgotten due to technological advancements. To tackle this problem, we propose a deep learning approach using the YOLOv8 model for the automatic recognition of Sundanese characters. Our methodology includes creating a comprehensive dataset, applying augmentation techniques, and annotating the characters. The trained model achieved a precision of 95% after 150 epochs, demonstrating its effectiveness in recognizing Sundanese characters. While some variability in accuracy was observed for certain characters and real-time applications, the results indicate the feasibility and promise of using deep learning for Sundanese script recognition. This research highlights the potential of technological solutions to digitize and preserve the Sundanese script, ensuring its continued legacy and accessibility for future generations. Thus, we contribute to cultural preservation by providing a method to safeguard the Sundanese script against obsolescence.

Keywords


Convolutional neural networks; Cultural preservation; Deep learning; Heritage preservation; Sundanese script; YOLOv8

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v36.i3.pp1759-1768

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics