Automatic classification of paddy leaf disease

Shafaf Ibrahim, Nurnazihah Wahab, Ahmad Firdaus Ahmad Fadzil, Nur Nabilah Abu Mangshor, Zaaba Ahmad

Abstract


RiceisastaplefoodinmostoftheAsiancountries.Itisanimportantcrop, andoverhalfoftheworldpopulationreliesonitforfood.However,paddy leafdiseasecanaffectboththequalityandquantityofpaddyinagriculture production.Theclassificationofpaddyleafdiseaseisanimportantand urgenttaskasitdestroysabout10%to15%ofproductioninAsia.Thus,a studyonautomaticclassificationofpaddyleafdiseaseusingimage processingispresented.Featureextractiontechniquesofcolor,texture,and shapewereimplementedtoanalyzethecharacteristicsofthepaddyleaf disease.Inanother note,aSupportVector Machine(SVM)isused toclassify thefourtypesofpaddyleafdiseasewhicharethebrownspot,bacterialleaf blight,tungrovirus,andleaf scald.Theperformanceofthe proposedstudyis evaluatedto160testingimageswhichreturned86.25%ofclassification accuracy.Theoutcomeofthisstudyisexpectedtoassisttheagrotechnology industryinearlydetectionofpaddyleafdiseaseinwhichanappropriate actioncould be taken accordingly.

Keywords


Automatic classification Paddy leaf disease Feature extraction, SVM

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v16.i2.pp767-774

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics