Coordination of directional overcurrent and distance relays based on nonlinear multivariable optimization
Abstract
To ensure stability, security, and protection of electrical equipment from the damage the suitable coordination must be made in interconnected networks. In this paper, the nonlinear multivariable optimization techniques have been used with different performance indexes: Sequential quadratic programming (SQP), Sequential quadratic programming legacy (SQP-Legacy), Interior-Point and Active-Set for IEEE- 8 bus test system. This system consists of twenty-eight protective relays divided into fourteen directional overcurrent relays (DOCR) and fourteen distance relays (DR). It has been tested in the ETAP environment to obtain three-phase short circuit current at the near and far end faults and operating time for all DOC relays for near-end fault as well as test the second zone time for distance relays (TZ2) with pilot signal (WP)and without pilot signal (WOP) of the proposed algorithm was used to reduce overall operating time of DOC relays and obtain optimal values for time multiplier setting (TMS) and TZ2 with the different coordination time interval (CTI) between main and backup relays. The simulation results were validated in ETAP program prove that the effectiveness of the Active-Set to minimize the TMS and TZ2 for the system.
Keywords
Nonlinear multivariable optimization; PUTT; Pilot protection; Directional overcurrent relay; Distane relay
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v17.i3.pp1194-1205
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).