An optimization of facial feature point detection program by using several types of convolutional neural network
Abstract
Detection of facial feature points is an important technique used for biometric authentication and facial expression estimation. A facial feature point is a local point indicating both ends of the eye, holes of the nose, and end points of the mouth in the face image. Many researches on face feature point detection have been done so far, but the accuracy of facial organ point detection is improving by the approach using
Convolutional Neural Network (CNN). However, CNN not only takes time to learn but also the neural network becomes a complicated model, so it is necessary to improve learning time and detection accuracy. In this research, the improvement of the detection accuracy of the learning speed is improved by increasing the convolution layer.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v16.i2.pp827-834
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).