Multilayer neural network synchronized secured session key based encryption in wireless communication
Abstract
Energy computation concept of multilayer neural network synchronized on derived transmission key based encryption system has been proposed for wireless transactions. Multilayer perceptron transmitting machines accepted same input array, which in turn generate a resultant bit and the networks were trained accordingly to form a protected variable length secret-key. For each session, different hidden layer of multilayer neural network is selected randomly and weights of hidden units of this selected hidden layer help to form a secret session key. A novel approach to generate a transmission key has been explained in this proposed methodology. The last thirty two bits of the session key were taken into consideration to construct the transmission key. Inverse operations were carried out by the destination perceptron to decipher the data. Floating frequency analysis of the proposed encrypted stream of bits has yielded better degree of security results. Energy computation of the processed nodes inside multi layered networks can be done using this proposed frame of work.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v14.i1.pp169-177
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).