Hopf Bifurcation in Numerical Approximation for The generalized Lienard Equation with Finite Delay

Guangyu Zhao, Yanchun Li

Abstract


The numerical approximation of The generalized Lienard equation is considered using delay as parameter.First, the delay difference equation obtained by using Euler method is written as a map.According to the theories of bifurcation for discrete dynamical systems,the conditions to guarantee the existence of Hopf bifurcation for numerical approximation are given.The relations of Hopf bifurcation between the continuous and the discrete are discussed.Then when The generalized Lienard equation has Hopf bifurcations at,the numerical approximation also has Hopf bifurcations at  is proved. At last, the text listed an example of numerical simulation, the result shows that system (8) discretized by Euler keeps the dynamic characteristic of former system (1), and the theory is proved.

 

DOI:  http://dx.doi.org/10.11591/telkomnika.v14i1.7461 


Full Text:

PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics