Robust Pitch Detection Based on Recurrence Analysis and Empirical Mode Decomposition

Jingfang Wang

Abstract


A new pitch detection method is designed by the recurrence analysis in this paper, which is combined of Empirical Mode Decomposition (EMD) and Elliptic Filter (EF). The Empirical Mode Decomposition (EMD) of Hilbert-Huang Transform (HHT) are utilized tosolve the problem, and a noisy voice is first filtered on the elliptic band filter. The two Intrinsic Mode Functions (IMF) are synthesized by EMD with maximum correlation of voice, and then the pitch be easily divided. The results show that the new method performance is better than the conventional autocorrelation algorithm and cepstrum method, especially in the part that the surd and the sonant are not evident, and get a high robustness in noisy environment.

 

DOI:  http://dx.doi.org/10.11591/telkomnika.v14i1.7216 


Full Text:

PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics