Scaling Model for Silicon Germanium Heterojunction Bipolar Transistor
Abstract
In the past half-century, scaling has been used to improve semiconductor devices performance. In this paper, we study the effects of scaling on SiGe(C) heterojunction bipolar transistors (HBTs) performances i.e. cutoff frequency (fT), maximum frequency of oscillation (fmax) and gate delay (τg). The SiGe HBT scaling models are developed from more than twenty years accumulated reported data. The results show that the peak cutoff frequency shows an increasing trend with emitter width scaling with a factor of ~WE-0.719, the peak maximum frequency of oscillation shows an increasing trend with emitter width scaling with a factor of ~WE-0.723 and the gate delay shows a decreasing trend with emitter width scaling with a factor of ~WE0.778.
Keywords
Full Text:
PDFRefbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).