Chaotic Local Search Based Algorithm for Optimal DGPV Allocation
Abstract
The advent of advanced technology has led to the increase of electricity demand in most countries in the world. This phenomenon has made the power system network operate close to the stability limit. Therefore, the power utilities are looking forward to the solution to increase the loadability of the existing infrastructure. Integration of renewable energy into the grid such as Distributed Generation Photovoltaic (DGPV) can be one of the possible solutions. In this paper, Chaotic Mutation Immune Evolutionary Programming (CMIEP) algorithm is used as the optimization method while the chaotic mapping was employed in the local search for optimal location and sizing of DGPV. The chaotic local search has the capability of finding the best solution by increasing the possibility of exploring the global minima. The proposed technique was applied to the IEEE 30 Bus RTS with variation of load. The simulation results are compared with Evolutionary Programming (EP) and it is found that CMIEP performed better in most of the cases.
Keywords
Chaotic local search; DGPV optimal location; FVSI; power losses
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v11.i1.pp113-120
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).