Neural Network and Local Search to Solve Binary CSP
Abstract
Continuous Hopfield neural Network (CHN) is one of the effective approaches to solve Constrain Satisfaction Problems (CSPs). However, the main problem with CHN is that it can reach stabilisation with outputs in real values, which means an inconsistent solution or an incomplete assignment of CSP variables. In this paper, we propose a new hybrid approach combining CHN and min-conflict heuristic to mitigate these problems. The obtained results show an improvement in terms of solution quality, either our approach achieves feasible soluion with a high rate of convergence, furthermore, this approach can also enhance theperformance more than conventional CHN in some cases, particularly, when the network crashes.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v10.i3.pp1319-1330
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).