Haar wavelet method for solving coupled system of fractional order partial differential equations

Abbas AL-Shimmary, Sajeda Kareem Radhi, Amina Kassim Hussain

Abstract


This paper deal with the numerical method, based on the operational matrices of the Haar wavelet orthonormal functions approach to approximate solutions to a class of coupled systems of time-fractional order partial differential equations (FPDEs.). By introducing the fractional derivative of the Caputo sense, to avoid the tedious calculations and to promote the study of wavelets to beginners, we use the integration property of this method with the aid of the aforesaid orthogonal matrices which convert the coupled system under some consideration into an easily algebraic system of Lyapunov or Sylvester equation type. The advantage of the present method, including the simple computation, computer-oriented, which requires less space to store, time-efficient, and it can be applied for solving integer (fractional) order partial differential equations. Some specific and illustrating examples have been given; figures are used to show the efficiency, as well as the accuracy of the, achieved approximated results. All numerical calculations in this paper have been carried out with MATLAB.

Keywords


Fractional order partial differential equations; Haar wavelet



DOI: http://doi.org/10.11591/ijeecs.v21.i3.pp%25p
Total views : 124 times

Refbacks



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics