Machine learning based stator-winding fault severity detection in induction motors
Abstract
Approximately 35% of all induction motor defects are caused by stator inter-turn faults. In this paper a novel algorithm has been proposed to analyze the three-phase stator current signals captured from the motor while it is in operation. The suggested method seeks to identify stator inter-turn short circuit faults in early stage and take the appropriate action to prevent the motor's condition from getting worse. Three-phase current signals have been captured under healthy and faulty conditions of the motor. Involving discrete wavelet transform (DWT) based decomposition followed by reconstruction using inverse DWT (IDWT), 50 Hz fundamental component has been removed from the captured raw current signals. Subsequently, from each phase current 15 statistical parameters have been retrieved. The statistical parameters include mean, standard deviation, skewness, kurtosis, peak-to-peak, root mean square (RMS), energy, crest factor, form factor, impulse factor, and margin factor. At the end, a standard machine learning algorithm namely error correcting output codes-support vector machine (ECOC-SVM) has been employed to classify six different severity of stator winding faults. The proposed fault diagnosis method is load and motor-rating independent.
Keywords
Discrete wavelet transforms; Error correcting output codes; Induction motors; Statistical feature; Stator winding faults; Support vector machine
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v38.i1.pp182-192
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).