Fake review detection using enhanced ensemble support vector machine system on e-commerce platform

Seenia Joseph, S. Hemalatha

Abstract


Due to the quick growth of online marketing transactions, including buying and selling, fake reviews are created to promote the product market and mislead new customers. E-commerce customers can post reviews and comments on the goods or services they obtained. Before making a purchase, new customers frequently read the feedback and comments posted on the website. Nowadays customers find it very difficult to identify whether the reviews are fake or not, but doing so is essential. So, it's very crucial to develop an online spam detection system to help both consumers and producers in their decision-making. The reviewer's behaviour and important review characteristics can help you identify fake reviews. The importance of this study is to develop a fake review detection system on e-commerce platforms using an enhanced ensemble support vector machine system in which the Euclidean distance is replaced with the Mahalanobis distance metric. Review texts collected from Amazon and Yelp were given as input data sets into the constructed model and classified as fake or real.

Keywords


Distance metric; Ensemble method; Fake reviews detection; Supervised machine learning; Feature selection; Support vector machine

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v38.i1.pp478-485

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics