Efficient deep learning approach for enhancing plant leaf disease classification
Abstract
The widespread occurrence of plant diseases is a major factor in the reduction of agricultural output, affecting both crop quality and quantity. These diseases typically begin on the leaves, influenced by alterations in plant structure and growing techniques, and can eventually spread over the entire plant. This results in a notable decrease in crop variety and yield. Successfully managing these diseases depends on accurately classifying and detecting leaf infections early, which is essential for controlling their spread and ensuring healthy plant growth. To address these challenges, this paper introduces an efficient approach for detecting plant leaf diseases. A concatenation of pre-trained convolutional neural networks (CNN) for enhanced plant leaf disease using transfer learning technique is implemented, with a specific focus on accurate early detection, utilizing the comprehensive new plant diseases dataset. The combined residual network-50 (ResNet-50) with densely connected convolutional network-121 (DenseNet-121) architecture aims to provide an efficient and reliable solution to these critical agricultural concerns. Various evaluation metrics were utilized to evaluate the robustness of the proposed hybrid model. The proposed ResNet-50 with the DenseNet-121 hybrid model achieved a rate of accuracy of 99.66%.
Keywords
Deep learning; DenseNet-121; Plant leaf disease; ResNet-50; Transfer learning
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v37.i2.pp1112-1120
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).