G2M weighting: a new approach based on multi-objective assessment data (case study of MOORA method in determining supplier performance evaluation)

Nirwana Hendrastuty, Setiawansyah Setiawansyah, M. Ghufroni An’ars, Fitrah Amalia Rahmadianti, Very Hendra Saputra, Miftahur Rahman

Abstract


Criteria weighting methods in decision support system (DSS) face various challenges and limitations that can affect their accuracy and reliability. One of the main challenges is subjectivity, this subjective assessment can reduce the objectivity and consistency of results. The main objective of the new weighting method grey geometric mean (G2M) weighting is to provide more objective and robust criteria weights under conditions of uncertainty and incomplete data. The new G2M weighting approach has a significant potential impact on the DSS field, it has the potential to generate more effective and efficient decisions, which can improve organizational performance, reduce risk and optimize outcomes. Pearson correlation test results of two sets of rankings generated by DSS methods namely grey relational analysis (GRA), simple additive weighting (SAW), multi-attributive ideal-real comparative analysis (MAIRCA), weighted product (WP), combined compromise solution (COCOSO), vlsekriterijumska optimizacija i kompromisno resenje (VIKOR), and a new additive ratio assessment (ARAS) that there is a strong positive correlation between the two methods using G2M weighting criteria. The high correlation value indicates that the rankings of the methods used tend to move together, giving confidence in the consistency and validity of the resulting ranking results. This gives confidence that both methods can be used simultaneously or interchangeably with consistent results. The use of G2M weighting in the DSS method used can support better decision-making by providing consistent information and validity of ranking results.

Keywords


Criteria weighting; Decision; G2M weighting; New approach; Objective

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v38.i1.pp403-416

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics