Credit card fraud detection using CNN and LSTM
Nishant Upadhyay, Nidhi Bansal, Divya Rastogi, Rekha Chaturvedi, Mohammad Asim, Suraj Malik, Khel Prakash Jayant, Abhay Kumar Vajpayee
Abstract
Credit card fraud is an evolving problem with the fraudsters developing new technologies to perform fraud. Fraudsters have found diverse ways to make a fraud transaction to the card holder. Thus, detecting suspicious behavior of a card is critical for preventing fraudulent transactions to happen. Artificial intelligence techniques, in particular deep learning algorithms can tackle these credit card fraud attacks by identifying patterns that predict transactions as fraud or legitimate. One-dimensional convolutional neural network (1D CNN) and long short-term memory (LSTM) both performs well on the sequential data especially on transactions data, yet there are not many studies done on combining these two algorithms to make an effective fraud detection approach. However, the dataset is highly imbalanced containing only 492 fraud transaction out of two lacs transactions. In this experimental study, firstly datasets will get prepared by using different sampling techniques along with their hybrid techniques secondly, observing the performance of individual CNN and LSTM on the datasets, finally on those datasets in which CNN and LSTM are performing well, by implementing ensemble on those data. The performance of the ensembles is observed using the performance metrics namely accuracy, F1-score, precision and recall. In the proposed experimental study, getting the F1-score of 99.96% and 99.89% in ensemble: early fusion and ensemble: late fusion respectively.
Keywords
CNN; Credit card; Fraud detection; LSTM; Online transaction
DOI:
http://doi.org/10.11591/ijeecs.v38.i2.pp1402-1410
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).
IJEECS visitor statistics