Predicting autism spectrum disorder through sentiment analysis with attention mechanisms: a deep learning approach
Abstract
Autism spectrum disorder (ASD) is considered a spectrum disorder. The availability of technology to identify the characteristics of ASD will have major implications for clinicians. In this article, we present a new autism diagnosis method based on attention mechanisms for behavior modeling-based feature embedding along with aspect-based analysis for a better classification of ASD. The hybrid model comprises a convolutional neural network (CNN) architecture that integrates two bidirectional long short-term memory (BiLSTM) blocks, together with additional propagation techniques, for the purpose of classification the origins of Autism Tweet dataset; the proposed work takes Autism Tweet dataset and preprocesses them to employ n-gram to extract features of which the features of the ASD behavior are fed to generate the significant behavior for classification. The model takes into account both behavior-guided features across every aspect of the Class/ASD to provide higher accuracy using Adam optimizer. The experimental values inferred that the n-BiLSTM technique reaches maximum accuracy with 98%.
Keywords
Adam optimizer; Autism spectrum disorder; BiLSTM; N-gram; Sentiment analysis
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v37.i1.pp325-334
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).