Performance analysis of 10 machine learning models in lung cancer prediction
Abstract
Lung cancer is one of the diseases with the highest incidence and mortality in the world. Machine learning (ML) models can play an important role in the early detection of this disease. This study aims to identify the ML algorithm that has the best performance in predicting lung cancer. The algorithms that were contrasted were logistic regression (LR), decision tree (DT), k-nearest neighbors (KNN), gaussian Naive Bayes (GNB), multinomial Naive Bayes (MNB), support vector classifier (SVC), random forest (RF), extreme gradient boosting (XGBoost), multilayer perceptron (MLP) and gradient boosting (GB). The dataset used was provided by Kaggle, with a total of 309 records and 16 attributes. The study was developed in several phases, such as the description of the ML models and the analysis of the dataset. In addition, the contrast of the models was performed under the metrics of specificity, sensitivity, F1 count, accuracy, and precision. The results showed that the SVC, RF, MLP, and GB models obtained the best performance metrics, achieving 98% accuracy, 98% precision, and 98% sensitivity.
Keywords
Lung cancer; Machine learning; Models; Performance; Predicting
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v37.i2.pp1352-1364
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).