Urban traffic congestion and its association with gas station density: insights from Google Maps data

Rafif Hasabi, Robert Kurniawan, Sugiarto Sugiarto, Ribut Nurul Tri Wahyuni, Erna Nurmawati


Analyzing air pollution caused by traffic conditions requires appropriate indicators. Currently, air pollution indicators are approximated by the number of vehicles and gas station density. However, this approach cannot provide information at a smaller level. This study aims to identify traffic congestion distribution from Google Maps data as an alternative air pollution indicator at smaller level using map digitization method. In addition, this study examines its relationship with the existing indicator called gas station density. The results show that the digitization method can map the traffic congestion distribution where most areas in West, North, and Central Jakarta are classified as high traffic. In addition, this study found that there is a strong and significant relationship of 0.58277 between traffic congestion distribution and gas station density. Thus, traffic congestion distribution and gas station density data from Google Maps can be used as an indicator of traffic-related air pollution, especially land transportation. Furthermore, this research is expected to serve as a basis for the government in determining mitigation strategies related to traffic congestion and the resulting emissions.


Air pollution; Gas station density; Google Maps; Map digitization; Traffic congestion

Full Text:


DOI: http://doi.org/10.11591/ijeecs.v35.i3.pp1618-1626


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics