Elevating smart city mobility using RAE-LSTM fusion for next-gen traffic prediction

Najat Rafalia, Idriss Moumen, Fatima Zahra Raji, Jaafar Abouchabaka


The burgeoning demand for efficient urban traffic management necessitates accurate prediction of traffic congestion, spotlighting the essence of time series data analysis. This paper delves into the utilization of sophisticated deep learning methodologies, particularly long short-term memory (LSTM) networks, convolutional neural networks (CNN), and their amalgamations like Conv-LSTM and bidirectional-LSTM (Bi-LSTM), to elevate the precision of traffic pattern forecasting. These techniques showcase promise in encapsulating the intricate dynamics of traffic flow, yet their efficacy hinges upon the quality of input data, emphasizing the pivotal role of data preprocessing. This study meticulously investigates diverse preprocessing techniques encompassing normalization, transformation, outlier detection, and feature engineering. Its discerning implementation significantly heightens the performance of deep learning models. By synthesizing advanced deep learning architectures with varied preprocessing methodologies, this research presents invaluable insights fostering enhanced accuracy and reliability in traffic prediction. The innovative RD-LSTM approach introduced herein harnesses the hybridization of a reverse AutoEncoder and LSTM models, marking a novel contribution to the field. The implementation of these progressive strategies within urban traffic management portends substantial enhancements in efficiency and congestion mitigation. Ultimately, these advancements pave the way for a superior urban experience, enriching the quality of life within cities through optimized traffic management systems.


Auto encoder; Hybrid deep learning; Intelligent transportation systems; Smart cities; Traffic prediction

Full Text:


DOI: http://doi.org/10.11591/ijeecs.v35.i1.pp503-510


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics