Machine learning approaches for predicting postpartum hemorrhage: a comprehensive systematic literature review

Dewi Pusparani Sinambela, Bahbibi Rahmatullah, Noor Hidayah Che Lah, Ahmad Wiraputra Selamat

Abstract


Postpartum hemorrhage (PPH) represents a significant threat to maternal health, particularly in developing countries, where it remains a leading cause of maternal mortality. Unfortunately, only 60% of pregnant women at high risk for PPH are identified, leaving 40% undetected until they experience PPH. To address this critical issue and ensure timely intervention, leveraging rapidly advancing technology with machine learning (ML) methodologies for maternal health prediction is imperative. This review synthesizes findings from 43 selected research articles, highlighting the predominant ML techniques employed in PPH prediction. Among these, logistic regression (LR), extreme gradient boosting (XGB), random forest (RF), and decision tree (DT) emerge as the most frequently utilized methods. By harnessing the power of ML, we aim to foster technological advancements in the healthcare sector, with a particular focus on maternal health and ultimately contribute to the reduction of maternal mortality rates worldwide.

Keywords


Artificial intelligence; Childbirth; Machine learning; Maternal bleeding; Postpartum hemorrhage; Prediction

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v34.i3.pp2087-2095

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics